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1. Introduction

The present paper is an outgrowth of comments made by the writer as an
official discussant of the stimulating paper [4] by Milton Sobel and
George Weiss presented at the Nonparametric Conference.l/ In those sections
of their paper in which 3-player tournaments are considered, Sobel and Weiss
formulate their problem in such a way that only one of three decisions 1is
permissible after the tournament is completed, i.e., one must choose one of
the decisions "Player 1 is best," "Player 2 is best," "Player 3 is best." As
the writer pointed out at the time, this foriulaticn of the problem may perhaps
be a reasonable one in some situations (e.g., when the tournament director 1is
told that a prize must be awarded to one of the players); but it would not
be appropriate if one permits the decision that there is no clear-cut "best'
player in the tournament -- to cope with those situations for which the
possibility exists that (say) Player 1 is better than Player 2, Player 2 is
better than Player 3, and Player 3 is better than Player 1. (The fallure
to provide for this ~ontingency causes some of the Sobel-Weiss sequential
osrocedures (those described in their Section 6, and which are based on the
likelihood ratio statistic) to require an arbitrarily large number of
Observations to terainate sampling, when the true state of affairs is such
that the probabilities that { beats j, that 3 beats k, and that k
beats 1 (1#), J#k, k#1, 1,§,k=1,2,3) all approach one.) The formulation
which we propose in the present paper (and which seems to us to be a very

natural one) permits a fourth decision 'no player is best,”" and is thus
capable of dealing with such a possibility.
The present paper has two main parts. Ir the first part (Section 2)

we formulate our ranking problem in much the same way as Sobel-Weiss [4]

1/

=" First International Symposium on Nonparametric Tcechniques in Statisticel
Inference held at Indiana University, Bloomington, Indiana, June 1-6, 1969.
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do theirs, except that we add the possioility of a fourth decision to their
three decisions. We add a probability requirement tc their probability
requirement, and propose a single-stage procedure wh'ch will guaraatee both
requirements. A numerical example is provided. The indifference-zone
approach employed in [4] and in our Section 2 is similar in spirit to the
approach used earller by the authors ([1], [2]) for certain classes of
ranking problems, although the present problem i1s quite different in
structure from the ones which we considered earlier.

In the second part (Section 3) we formulate an identification problem
which also parsllels the one formulated by Sobel and Weiss, except that
(as with the ranking problem) we add the possibility of a fourth decision,
and an additional probability requirement. We propose a sequential identi-
fication procedure which will guarantee both requirements. Incorporated
into our procedure is a certain prior probability distribution which is
assumed to be known. The theory underlying the sequential identification
procedures in both the Sobel-Weiss paper and the present paper 1s developed
completely in {2] although some minor modifications are necessary to insure
that our procedure guarantees our two requirements.

Our main interest really centers in the formulation of the ranking
problem of Section 2, and in sequential procedures which guarantee the
associated probubility requirement. Our identification problem of
Section 3, and the sequential procedure which guarantees the =seociated
protability requirement can be regarded as a first step toward finding a
sequential procedure for the ranking problem. The relation between such
identification and ranking problems 18 discussed in Section 4. Finally,

a more detailed consideration of certain aspects of the relation between

the Sobel-Weiss paper and our paper is given in Section 5.

— . e
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Sobel and Weiss propogsed several intuitively appealing sampling rules
for their sequential identification procedure. The Monte Carlo sampling
results which they obtained using these rules are very striking, and
demonstrate that this 1is a very fruitful area for future research. Their
sampling rules can be incorporated in our sequential identifi-ation pro-
cedure, and we would auticipate that the performance of our procedure

would thereby be improved.
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2. A _ranking problem

Let Pyy = P{Player i beats Player j} (i#3; 1,3=1,2,3),
(0 < Pyy S 1); the Pyy are unknown, and it is also assumed that we

have no knowledge as to whether <1/2 or > 1/2. (We assume

that the possibility piJ = 1/2 cannot occur;/) 1f p1J > 1/2 we say

that P
at Player {1 1is better than Player j. Let Yib,cd, ef be the State

of Nature in which Pap > 1/2, Peg > 1/2, Pog > 1/2. There are then 8

possible States of Nature w which w2 group into

12,23,31°°°"°“21,32,31
sets QO""'“} as in Table I; the interpretation of each Qi ie also s

given in the table.

Table 1

"-I'\‘ " ' ' ' ~ “ - — — -

Relation of Pyy to 1/2

State of Nature Interpretacion of Qi

P2 Pa3 P13

w > 2 <
12,23,31 No player is best

¥21,32,13

w
12,23,13 Player 1 18 best '

“12,32,13

w
21,23,13 Player 2 is test

290, 281,31

w
03 1202008 Player 3 18 best

“21,32,31

—

L/ p1J = 1/2 represents the boundary regionn between the ﬂl-regions

given in Table I.

om) M pEy Jmy puy ey Emy EEy ey )
N:D
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2.1 Goal, and probability requirement

The goal (purpose of the experiment) is stated below aloag with an

agsociated probability requirement

Goal: We wish to determine which one of the @

the true State of Nature.

(R).

We permit fourl/ possible terminal

1 (1=0,1,2,3) represents

decisions. These are given,

along with their interpretation. in Table II.
Table 1T
Decision Meaning of decision
No player is best: Either Py 1/2, Py 1/2, P3¢ 1/2,
d 2
0 or P1g ¢ 1/2, Pyy < 1/2, P13 1/2.
Player 1 is best: Either P17 1/2, Py3 > 1/2, P13 > 1/2,
d
& or P’ 1/2, Py3 < 1/2, P13’ 1/2.
; Player 2 is best: Either Pyp ® 1/2, Pyy > 1/2, P13 > 1/2,
2 5
or P © 1/2, Pyy > 1/2, P13 € 1/z.
Player 3 18 best: Either Prp 1/2, Py3 ¢ 1/2, Py3 < 1/2,
d
? o P12 ¢ 1/2, Pyy © 1/2, P13 < 1/2.
1/

mine which one of the 8 uw's
There would then be 8 possible terminal decisions. Corresponding changes

would have to be made in the probability requirement (P).

=" It 1s also possible to counsider an alternative goal which ie¢ "To deter-
represents the true State of Nature."




Prior to the start of play we specify four constants {po, PB; P1 Pi}

with 1/2 < ,» My < 1; 174 < P*. P* < 1 which are incorporated into the
Por M1 0’ "1

following probability requirement.

Probability requirement (R):

We require that our prccedure guarantee that

%

P, = P{Making decision do} LA

23 Payl 2 P

(2.1) lo: wvhen min{plz. p
or
when min{p21, Pyp P13} Py
and

*

P, = P{Making decision di} 2 By

(i=1,2,3)

(2.2) Rl: wvhen min(p1J )

(J64; -kei; Jék; 3,k=1,2,3).

2.2 Rezions of preference and indiff~rence

To assist the reauer in visualizing the probability requirement, we give
a geometric interpretation of the regions in the parameter space where
particular decisions are preferred, and the region of indifference. The true
State of Nature can be represented as a point p = \Pyos Poys p13) in the
unit cube (0 < pij £1), (4 <93, 1,4 =1,2,3). For simplicity of represent-

ation we let Yij - 2(p1‘1 - 1/2), and transforw the parameter space into the

cube (-1 < Yij <1), (1 <3, 1,3 =1,23) which is depicted in Pigure 1.
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Then (z) in Figure 1 is the region in the parameter space of the yij
where decision d1 (1 = 0,1,2,3) 1is preferred. The region not included

in the region of preference for any d, is referred to as the region of

i
indifference.

2.3 Single-stage procedure

There may be many statistical procedures (single-stage, two-stage,
sequential) which will guarantee the probability requirement (R) of

Section 2.1. We describe here a simple single-stage one.

SINGLE-STAGE RANKING PROCEDURE

Conduct a c-cycle tournament, a cycle consisting of 3 games
{Player 1 vs. Player 2, Player 2 vs. Player 3, Player 1 vs. Player 3}

where c 1is a predetermined number, computed as described in Secticn 2.4.

Calculate 512, 623, Py where Byy = (proportion of gaves in which

Player 1 beat Player j 1in the c-cycle tournament). Compare each of
these ﬁij to 1/2, and make the obvious terminal decision, e.g., make
decision do 1f py, > 1/2, p,y > 1/2, Pi3 < 1/2 or if {;12 <1/2,
523 <1/2, ;13 > 1/2. Randomize between decisions if ties occur, e.g.,
randomize between decisions d, and d, with probability one-half if

0 2
Pjp ™ 1/2, Poy > 1/2, Pyg < 1/2, ties cannot occur if ¢ 18 odd.

2.4 Determination of number of cycles (E)

Our problem now 1s to determine the smallest y,),. of ¢ that will

guarantee R. For simplicity we consider only odd ¢ (and thereby avoid thc )

necessity of discussing ties). Denoting the cumulative binomial probability
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e n! y n-y
Pr{X > x | n,p} = Z ————= p7 (1-p) by B(x|n,p), we have that
& o yl1{(n-y)!

c+l

+
Fle.pay)  BER

+1
Tler) BT

(2.3) P, = B(5—

C:P31)

c+l

S Clp23)][1 - B(—E— C’p3l)] ’

+ (1 - B(—Z—' Che

C.Plz)][l - B~

and for jéi, k#éi, jék; j,k=1,2,3 we have

(2.4) P, = B B c\pyy) @=1,2,8)

C.pij)

Since Po > 1/2 we have that PO is minimized, subject to min{plz, Po3» p31}
2 Pg» when py, = p,y3 = Py = Py, Oor subject to max{plz, Po3e p31} <1- Po
(which is equivalent to min{pzl, P3ys p13} > py) when pi, = Pyg = Py = 1 - Py
the same value of PO is attained when P1p = Pp3 = Py} = Py as when

Plp = Pp3 = P3 = 1- Py Also, Py (1=1,2,3) 1s minimized, subject to
I - = < 2
minlpij, pik) 2 Py when p1j Pik Py~ We refer to the configurations

P2 = Py3 = P3p = Pg and pyy = py3 = Py = 1 - Py as least favorable (LF)

for R0 when min(plz, Py3s p31} 2 pg or when max(plz, Pa3s p3l} el = Po»

respectively, and the configurations " Py = Pp as LF for R1 when

pij
min{Pij, pik} > py+ Thus {f we choose ¢y and ¢, as the smallest (odd)

integers ¢ which satisfy

+ +1 3
(2.5) 33(% c,pp) + (1 - B [eupp))” 2 P

P -

iy
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and

2,c+1] *
(2.6) B (Hepp 2Py,

respectively, we see that
2.7 c =
(2.7) c max{co, cl}

1s the smallest (odd) integer which guarantees R.

2.5 Numerical example

Suppose that the experimenter sets up the specification = 0.60,

Po
ps = 0.75; p; = 0.65, pI = 0.90. We find using [4] that

[B(2243,0.60))° + [1 - B(22]43,0.60))> = (0.908676)° + (0.09:324)> =
0.751048 while [B(21]41,0.60))° + [1 - B(21]41,0.60)]° = (0.903483)° +

(0.096517)% = 0.73840; hence, c. = 43. Also, [B(15]29,0.65)]° =

0

(0.952363)% = 0.90700 wrile [B(14]27,0.65)1% = (0.946377)% = 0.89563,

hence ¢, = 29. Thus ¢ = max{43,29} = 43. But when c = 43 we alsco
obtain 58(22|43,0.65)]2 - (0.978598)% = 0.95765, [B(22|43,o.64)]2 =
(0.970264)% = 0.94141, [B(22]43,0.63)]% = (0.959510)° = 0.92066,
(B(22]43,0.62)]% = (0.945923)2 = 0.89477. Thus, for no extra cost in
terms of sampling, 1.e., using c = 43, the experimenter could have set

up and guaranteed stricter probability requirements R with specifications

such as {p,, P§; b} PI} = (0.60, 0.75; 0.65, 0.95765}, ...,

{0.60, 0.75; 0.63, 0.92066}.

e [ i) i i g P,
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3. An identification problem

Let be defined as in Section 2. We assume that Py» Ppo 6 are

pij
three given probabilities with 1/2 < Po» P> 6 < 1, and that there are
o o
4

8 possible States of Nature w12’23'31, 400 w21,32’31 which represent
certain possible pairings of the triple (p12’ Py3 p31) with the prob-
abilities Pgr Py+ 6. These pairings are given in Table III, as are the
o, o

groupings of the w 's 1into sets Qg, 800q 93. We further assume a known

prior probability ¢, E(wo) 20 ( z g(wo) = 1) assoclated with each
Qo

one of the 8 States of Nature 1in QO-QJ Qi. For our problem it seems reasonable
1i=0
because of the symmetries, to set C(wo) = (1-3A)/2 for each of the 2 w®'s

in ng, and £(°) = A/2 for each of the 6 w°'s 4in n‘;un‘z’un‘;. Then

o (o]
CO E(QO) = 1-31 and Ei =- C(Qi) =) (1 =1,2,3).

v - .-
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Table III
Pairings of (plz, Pyys p31) vith py, Py, 8
State of Nature b I
P12 P23 31 '
» P
o |12,23,31 Po Po 0
0
o
- = 1l -
“21.32,13 1 -7 1 -pg Py |
[o]
1 -
o | 12,2313 P g Py
Q
1 [o]
1-9 1 -
“12.32.13 Py P1
o
- 6
© |fn,23,3 1-7 Py
2 )
< - -0
“21,23,13 1-p P !
o [ “12,32,31 o 1-p PL
J ° 1-6 1 -
©21,32,31 P Py

3.1 Goal, aucd probability requirement [

The goal 1is stated below along with an associated probability require-

ment (RO), '

Cnal: We wish to determine which one of the Qi (1 = 0,1,2,3) represents |

the true State of Nature.

We permit four possible terminal decisions. These are given, along

with thelr interpretation, in Table IV,
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Table IV
|
Decision Meaning of decision
No player is best : Either p,, ™ P,q ™ Pay ™ P
do 12 23 31 0
or P1 " P3Py " 1 - Py
Player 1 1s best : Either p,, = P.a ® Pys Poga ™ 6,
dl 12 13 1’ 723
e Pla " P13 =Py Pp3 =1 -8
Player 2 is best : Either p, = Py3 = Py» Pqp = 8,
d
2 or Pa1 = Pp3 " Ppr Py =18
Player 3 1is best : Either P32 = P3; " Py» Pyp * 8,
d
? | & Pyp " P3 TP Py l-®

*
Prior to the start of play we specify two constants {PS » Pl} with
1/4 < PS , PI < 1 which are incorporated into the following probability

requirement.

Probability requirement (Ro):

We require that our procedure guarantee that

o o (o} *
(3.1) Ry Po = P{Making decistion d, when 2, {s true} > P,
and
(3.2) R? : pi - P(Making decision d, when ni is true) > PI

1=1,23)
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(The notation of (3.1) and (3.2) is justified by the fact that for simplicity
ve shall consider only procedures whose symmetry iunsures that for each 1

the probability expressions of (3.1) and (3.2) are the same for both members
of 92 (1 = 0,1,2,3).) It should be noted that in this problem we are

deciding among four composite hypotheses (each oune consisting of two

completely specified States of Nature) with specified lower bounds on the

probability of a correct decision for each of these States of Nature.

3.2 Sequential procedure

In this section we shall describe a sequential identification procedure
which will guarantee the probability requirement (Ro). The theory under-
lying this development is derlved in (2].

Our sequential procedure is based on 8 likelihoods, each one of which
is associated with a different one of the eight States of Nature of Table
III, These are defined in (3.3), below. In making these definitions we
assume that the tournament is rum in cycles (as defined in Section 2.3).
However, this assunption of cyclic play is made only for con--
venierce, and the same results would hold for more general symmetrical

playing rules. Let séij) - sij (say) denote the number of ''succesies"

for Player 1 when he plays Player j, i.e., the number of times that 1

beats j, 1in their first m games. We then define the 8 likelihoods

L(12,23,31) _ 812(1- )321 523(1- )932 331(1_ )913
o Po Po?  Po Po’ Po Po
_ s12+823+831 7 )821+332+813
Po P
12 21 23 32 31 13
(3.3) (21,32,13) _ (,_ 8 8 _ s~ 8 _ 8 8
L (1 po) Pg po) pp (1 po) Po
821+832+813 J12,.23, 31
" Py (l—po)

g e i, e
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12 21 823 a32 831 813
(t-p))® 87 (1-0)°  (1-p))° py

L(12,23,13) - p;
m

12 21 23 32 31 13

(12,32,13) 8 s 8 8 8 8
= =p, -pp) (1-8)" o (1-p)" py

1

etc.,

and the 4 likelihood sums

L () = 1(12,23,3D) | (21,22,13)
m m m

0

L (d.) = L(12,23,13) + L(12,32,13)
m 1 m o

(3.4)

o . (21,23,31) (21,23,13)
Lm(dz) Lm + Lm

L(12,32,31) - L(21,32,31)

Lm(d3) " (1) n

The a posteriori probability after cycle m that dj is the correct
3(23), 8(31))
o

decision given £ ard s = (3(12).
o o m

is

€, L )
(3.5) me - -—J1 @ 1" (4 = 0,1,2,3).

%
€, L (d)
k=0 k o k

The stopping and terminal decision rules of our sequential procedure are

based on the Pjn of (3.5) and on a coustant P*(1/4< Pr < 1) which is

chosen to guarantee (3.1) and (3.2). As stated in the preliminaries of

Section 3, we shall let {0 «=1-32 and C1 a ) (1 =1,2,3) where A

is8 assumed to be known.
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SEQUENTIAL IDENTIFICATION PROCEDURE

Sampling rule: Run the tournament in cycles.

Stopping rule: Stop the tournament at the first cycle n for which

3.6) max P° > P*
0ggs3 I
where
(Ps for A =0
(3.7) P* = < max{P} + 3A(1-P8), 1 - 3A(1-PI)} for 0 < A < 1/3
]
kP1 g . for A o= 1/3.

Terminal decision rule: Make the decision which has associated with it the

largest of the P;n. 1f, because of equalities among the R?n, several

decisions are associated with the same maximum value, then select one
such decision by a random device wvhich assigns the same probability to

each.

The terminal decision rule can be stated equivalently as follows.

Letting d, be the decision d for which Ln(a.) = pax L (d,), we:

3 3 1y I
A —
Choose d, if L 4y > 1-n Ln(dj) .
— x —
(3.8) Choose dJ if L (dg) < 1% Ln(dj)

Randomize among ties.

In the uext section we show -hy ﬁ' of (3.7) guarantees (3.1) and (3.2).

- i S — -

g R
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3.3 Determination of stopping constant (ﬁ*)

We first remark that in general it is difficult to determine stopping
constants which not only guarantee probability requirements such as Rc,
but also do so in some optimal sense. This i3 particularly the case for
nonsy metric situations when the number of terminal decisions which the
statistician 1s permitted to make is greater than two (which 1is our

situation). In fact almost all of the theory contained in [2] which deals

with sequential identification procedures is concerned with symmetric
situations. However, it is possible to make use of certain results and
remarks in [2] (specifically those in Section 3.7(c), pp. 51-52) to obtain
solutions for certain particular problems involving nonsymmetric situations.
No claim 1is made that these are the best possible solutions (which they
certainly are not), but only that these solutions guarantee (3.1) and (3.2).
It follows from results proved in {2} (specifically from Lemma 3.1.1
and Corollary 3.1.1 -- see also equation (3.7.2)) that our sequential iden.i-
fication procedure of Section 3.2 using P#*(1/4 < P* < 1) on the r.h.s. of

(3.6) guarantees

kv

(3.8) 3A pi A4S 3x)p8 p*

where Pg and Pi - P; - Pg are defined in (3.1) and (3.2), respectively.

From (3.8) 1t follows, by setting first P? and then Pg equal to one,

that

o
(3.9) PO 2 (P* - 3)/(1 - ) for 0 <X <1/3




|
:
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(3.10)  P) > (Pt-1+3A)/3% for 0< g 1/3.

-« ..

Since for fixed X the r.h.s. of both (3.9) and (3.10) are jypcreasing
functions of P* which approach one as P* approaches one, it follows that
we can choose P* sufficiently large that the ¢.h.s. of (1.9) is > PG and

the r.h.s. of (3.°0) is > PI , if ve let P* denote the smallest value of

?* which accomplishes this dual objective, we see that P* is given by (3.7).

.
3.4 Numerical example
' -
| In Table V w- give the values of P* associated with the specification
; Ps - 0.75, p; = 0.90 for selected values of £ =X (1 =1,2,3).
(
Table V
- P - 3 Px - 1 + 3\
* Jiaiss A T - AT JA
A P 1-3 n
1/3 0.90 . 0.90
- 0.33 0.9975 0.75 0.9975~
< 0.30 0.975 0.75 0.9722
i 5/21 13/14 0.75 0.90
0.20 0.94 0.85 0.90
0.10 0.97 0.9571 0.90
¥ 0.01 0.997 0.9969 0.90
3 0 0.75 0.7% -—-
§
— e st o i e e e
pva— = — - . — e I
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We note that when P* 1is considered as a function of A for fixed

{Pa , P;), it is discontinuous at A =0 and X = 1/3, e.g., P*+ 1 as
A+ 1/3, but P* = 0.90 when ) = 1/3. However, this is to be expected:

o
0

zero. But the procedure is still required to make the decision do at

As ) + 1/3, the a priori probability £o assoclated with . approaches

least 75 percent of the time when Qg occurs (however infrequently), as well
as to make the decision d1 at least 90 percent of the time when Q: occurs

(1 = 1,2,3). This will in general require many cycles to terminate the

tournament (and hence the expected number of cycles to terminate the

experiment will be very large). But when ) = 1/3, 98 cannot occur, and
the procedure 1s only required to decide among ﬂi, Q;, Qg and make the

(o]

decision d1 at least 90 percent of the time when 01

occurs (1 = 1,2,3).
A similar analysis holds for A + 0 and X = 0.

In Table V the minimum value of P*, namely 13/14 = 0.9286, occurs
when ) = 5/21. In general this minimum value occurs when
A =X = (1-P%)/3(2-P4-P4) and 1s associated with P = (P* - 31)/(1-31)
and PA = (P* - 1 + 3))/32,

We note that for A = 0.33 (say), the experimenter could set up the
stricter specification (Pa - 0.75, Pi = 0.9975}, and he can guarantee {t
with the same amount of sampling as 18 required by the present specification;
such a tightening of the specification is possible for all A-values
(O <X <1/3) except A = 5/21.

A non-Bayesian might regard X (0 < A < 1/3) as a constant, at his
disposal, to be set in such a way as to cause the procedure to have certain

properties which he deems desirable. Thus he might set X = A, and still

be assured that the procedure will guarantee (3.1) and (3.2).
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4. Relation betweea the ranking and identification probl.

It was demonsirated in [2] that in many situations of practical interest,
appropriate sequential procedures are more efficient thapo .ir~le-stage pro-
edures which guarantee the same probability requirements, i.e., the sequential
procedures often guarantee these requirements with a smaller expected number
of observations. With this fact :n mind, we would like for the problem of
Section 2 to find a gequential ranking procedure, to replace the single-stage
ranking procedure of that section, which will guarantee the probability
requirement (2.1) and (2.2). As a first step in this direction, we set up an
artificial identification problem, and displayed in Section 3.2 a sequential
identification procedure which will guarantee the associated probability
requirement (3.1) and (3.2) (which corresponds to protecting against the

least favorable configuration of (2.1) and (2.2) with the addition of the

nuisance parameter 6). (Usually, if one cannot solve the identification
problem, there is little hope of solving the corresponding ranking problem.)
The next logical step in tne research process would be to try to produce a
sequential ranking procedure which reduces to the sequential identification
procedure when the parameters are in the least favorable configuration, and
which for an arbitrary corfiguration of the parameters guarantees the prob-
ability requirement (2.1) and (2.2). (This 1is the same general approach as
was used in (2]. See, in particular, Sectioms 3.6 aud 6.1.) However, we wish
to emphasize that we have made no attempt in the preser paper to produce
such a sequential ranking procedure, but rather leave that as a topic for
fucure research.

One would naturally be very much interested in the efficiency (measured
in terms of expected number of cycles to terminate the tournament) of our

sequential identiiication procedure of Section 3.2 relativa to that of a
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single-stage identification procedure which guarantees (3.1) and (3.2).

(Note that the determination of the ¢ of (2.7) does not imvolve knowledge

of the value of the nuisance parameter 6, while the use of the sequential
identification procedure of Section 3.2 does involve such knowledge.) However,
we remind the reader that the sequential identification pracedure of Section
3.2 which uses the ﬁ* of (3.7) 1is very conservative for 0 < A < 1/3 because
of the crude inequalities (3.9) and (3.10) used in deriving it, i.e., the

procedure will actually achieve probabilities of a correct decision under

(¢}

0 (1 = 0,1,2,3) which are substantially higher than the specified values

-

O »

P and PI. Thus it may be somewhat misleading to compare this procedure with

a single-stage identification procedure which is set up to guarantee the

same probability requiremente (3.1) and (3.2), unless some adjustment is

made for "excess." (See [2], Section 3.7(d) and (e).)

5. Relation between the Sobel-lleiss paper and the present paper

The Sobel-Weiss paper [4]) describes selection procedures for tournaments
with 2 or 3 players. Their formulation of the problem for tournaments with
3 players is analogous to ours except that they never permit the decision do,

and hence they consider only the probability requirements Rl of (2.2) and
Ri of (3.2). Ideally they would like all of their sequential procedures for

tourngments with 3 players to guarantee our probability requirement R1 of

(2.2) (their requirement (1.1)). However, at this point in the development
of the theory, none of their procedures has been proved to do so.

Thew have proved that thelr procedure

R does so if the value ot the nuisance parameter 8 in our (2.2) 1s

T " Pyk

known. Their procedure RE is shown to guarantee our probability requirement

Ri of (3.2). Their procedure RS is intended to guarantee R: of (3.2), 1t

is studied using Monte Carlo sampling, but no analytic results are obtained.
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The Sobel-Weiss procedures RDL’ RDD’ RDDR’ RIC’ and RBKS guarantee
our Ri of (3.2): they use the same stopping rule and terminal decision
rule as does our sequential identification procedure of Section 3.2 when we
let 2 = 1/3 1in our procedure, but they use different sampling rules.
(Their procedure RBKS 1s identical to our procedure when we let A = 1/3.)
Their sampling rules could be used with our procedure of Section 3.2 for
arbitrary A (0 < X < 1/3) to guarantee (3.1) and (3.2) simply by redefining

the L 's of (3.3) to read L(ab,cd,ef) since in general we will bave
m
CRSL PR

s(ab), B(Cd). s(ef)
m m

) - . with LS ¢ LI ¢ LY The improvements in N values
(see the tables in [5) summarizing the results of Monte Carlo sampling
experiments) obtained using their sampling rules may very well carry over to
our procedure for acrbitrary X (0 < X < 1/3), and this possibility is
Certainly worth investigating further.

It should be pointed cut that a major drawback of the Sobel-Weiss
3-decision formulation is that E{n} will become arbitrarily large for their

five procedures RDL' RDD' RDDR’ RIC' and RBKS if minfplz, Pygs P31} + 1

or min{p,,, P13> p32} + 1 (since this means that d, 1is the true State
of Nature). However, our procedure will tend to terminate early in either

of these situations, and make the Jecision do.

6. Directions of future research

It would be desirable to contiuue the present investigation to find
sequential ranking procedures which can be proved analytically to guarantee
the probability requirements (2.1) and (2.2), and which employ some of the

sampling rules (or variations thereof) studied by Sobel and Weiss.

TR T e
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Research should be devoted to finding improved values of the stopping
constant P* of (3.7) in order to cut down on the overprotection, It
would alse be interesting to generalize thie approach to tournaments

involving more than 3 players.
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